Back to Search Start Over

Uncovering floral composition of paper wasp nests (Hymenoptera: Vespidae: Polistes) through DNA metabarcoding.

Authors :
Mohamadzade Namin S
Son M
Jung C
Source :
Scientific reports [Sci Rep] 2024 Feb 03; Vol. 14 (1), pp. 2830. Date of Electronic Publication: 2024 Feb 03.
Publication Year :
2024

Abstract

As the social organism, Polistes wasps build a communal nest using woody fibers with saliva for sustaining brood and adult population throughout the season. Limited information exists regarding the identification specific plant materials employed in wasp nest building. Thus, we firstly tested if the DNA metabarcoding approach utilizing rbcL and trnL molecular markers could identify the plant species quantitatively and qualitatively inform the mixed-origin woody samples. A threshold of 0.01 proportion of reads was applied for rbcL and trnL molecular markers, while this threshold for median proportion was 0.0025. In assessing taxa richness, the median proportion demonstrated superior performance, exhibiting higher taxa detection power, however, rbcL marker outperformed in quantitative analysis. Subsequently, we applied DNA metabarcoding to identify the plant materials from the nests of two Polistes species, P. mandarinus and P. rothneyi. The results showed that higher preference of Quercus and Robinia as the major nest building materials regardless of the surrounding plant communities, by two wasp species. Material diversity was higher for P. rothneyi than P. mandarinus, which may explain the abundance of this species possibly with heightened adaptive capacities in their nesting behavior. This study demonstrated that DNA metabarcoding could identify the complex nest-building plant materials of paper wasps and provide insights into their ecological interactions in the natural ecosystem.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
38310136
Full Text :
https://doi.org/10.1038/s41598-024-52834-6