Back to Search Start Over

Cleavage of natural rubber by rubber oxygenases in Gram-negative bacteria.

Authors :
Prakash T
Yadav SR
Bürger M
Jendrossek D
Source :
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2024 Feb 02; Vol. 108 (1), pp. 191. Date of Electronic Publication: 2024 Feb 02.
Publication Year :
2024

Abstract

Bacterial degradation of natural rubber (NR) in an oxic environment is initiated by oxidative cleavage of double bonds in the NR-carbon backbone and is catalyzed by extracellular haem-containing rubber oxygenases. NR-cleavage products of sufficiently low molecular mass are taken up by the cells and metabolized for energy and biomass formation. Gram-negative and Gram-positive NR-degrading bacteria (usually) employ different types of rubber oxygenases such as RoxA and/or RoxB (most Gram-negative NR-degraders) or latex clearing protein Lcp (most Gram-positive NR-degraders). In order to find novel orthologues of Rox proteins, we have revisited databases and provide an update of Rox-like proteins. We describe the putative evolution of rubber oxygenases and confirm the presence of a third subgroup of Rox-related proteins (RoxCs), the biological function of which remains, however, unclear. We summarize the knowledge on the taxonomic position of Steroidobacter cummioxidans 35Y and related species. Comparison of genomic and biochemical features of strain 35Y with other species of the genus Steroidobacter suggests that strain 35Y represents a species of a novel genus for which the designation Aurantibaculum gen. nov. is proposed. A short summary on the capabilities of NR-degrading consortia, that could be superior in biotechnological applications compared to pure cultures, is also provided. KEY POINTS: • Three types of rubber oxygenases exist predominantly in Gram-negative microbes • S. cummioxidans 35Y contains RoxA and RoxB which are superior in activity • S. cummioxidans 35Y represents a species of a novel genus.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1432-0614
Volume :
108
Issue :
1
Database :
MEDLINE
Journal :
Applied microbiology and biotechnology
Publication Type :
Academic Journal
Accession number :
38305904
Full Text :
https://doi.org/10.1007/s00253-023-12940-3