Back to Search Start Over

Biomarkers vs Machines: The Race to Predict Acute Kidney Injury.

Authors :
Ghazi L
Farhat K
Hoenig MP
Durant TJS
El-Khoury JM
Source :
Clinical chemistry [Clin Chem] 2024 Jun 03; Vol. 70 (6), pp. 805-819.
Publication Year :
2024

Abstract

Background: Acute kidney injury (AKI) is a serious complication affecting up to 15% of hospitalized patients. Early diagnosis is critical to prevent irreversible kidney damage that could otherwise lead to significant morbidity and mortality. However, AKI is a clinically silent syndrome, and current detection primarily relies on measuring a rise in serum creatinine, an imperfect marker that can be slow to react to developing AKI. Over the past decade, new innovations have emerged in the form of biomarkers and artificial intelligence tools to aid in the early diagnosis and prediction of imminent AKI.<br />Content: This review summarizes and critically evaluates the latest developments in AKI detection and prediction by emerging biomarkers and artificial intelligence. Main guidelines and studies discussed herein include those evaluating clinical utilitiy of alternate filtration markers such as cystatin C and structural injury markers such as neutrophil gelatinase-associated lipocalin and tissue inhibitor of metalloprotease 2 with insulin-like growth factor binding protein 7 and machine learning algorithms for the detection and prediction of AKI in adult and pediatric populations. Recommendations for clinical practices considering the adoption of these new tools are also provided.<br />Summary: The race to detect AKI is heating up. Regulatory approval of select biomarkers for clinical use and the emergence of machine learning algorithms that can predict imminent AKI with high accuracy are all promising developments. But the race is far from being won. Future research focusing on clinical outcome studies that demonstrate the utility and validity of implementing these new tools into clinical practice is needed.<br /> (© Association for Diagnostics & Laboratory Medicine 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our siteā€”for further information please contact journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1530-8561
Volume :
70
Issue :
6
Database :
MEDLINE
Journal :
Clinical chemistry
Publication Type :
Academic Journal
Accession number :
38299927
Full Text :
https://doi.org/10.1093/clinchem/hvad217