Back to Search Start Over

Monophasic coamorphous sulpiride: a leap in physicochemical attributes and dual inhibition of GlyT1 and P-glycoprotein, supported by experimental and computational insights.

Authors :
Pardhi E
Tomar DS
Khemchandani R
Bazaz MR
Dandekar MP
Samanthula G
Singh SB
Mehra NK
Source :
Journal of biomolecular structure & dynamics [J Biomol Struct Dyn] 2024 Feb 01, pp. 1-30. Date of Electronic Publication: 2024 Feb 01.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.Communicated by Ramaswamy H. Sarma.

Details

Language :
English
ISSN :
1538-0254
Database :
MEDLINE
Journal :
Journal of biomolecular structure & dynamics
Publication Type :
Academic Journal
Accession number :
38299571
Full Text :
https://doi.org/10.1080/07391102.2024.2308048