Back to Search Start Over

A statistical framework for planning and analysing test-retest studies of repeatability.

Authors :
Danzer MF
Eveslage M
Görlich D
Noto B
Source :
Statistical methods in medical research [Stat Methods Med Res] 2024 Feb; Vol. 33 (2), pp. 295-308. Date of Electronic Publication: 2024 Jan 31.
Publication Year :
2024

Abstract

There is an increasing number of potential quantitative biomarkers that could allow for early assessment of treatment response or disease progression. However, measurements of such biomarkers are subject to random variability. Hence, differences of a biomarker in longitudinal measurements do not necessarily represent real change but might be caused by this random measurement variability. Before utilizing a quantitative biomarker in longitudinal studies, it is therefore essential to assess the measurement repeatability. Measurement repeatability obtained from test-retest studies can be quantified by the repeatability coefficient, which is then used in the subsequent longitudinal study to determine if a measured difference represents real change or is within the range of expected random measurement variability. The quality of the point estimate of the repeatability coefficient, therefore, directly governs the assessment quality of the longitudinal study. Repeatability coefficient estimation accuracy depends on the case number in the test-retest study, but despite its pivotal role, no comprehensive framework for sample size calculation of test-retest studies exists. To address this issue, we have established such a framework, which allows for flexible sample size calculation of test-retest studies, based upon newly introduced criteria concerning assessment quality in the longitudinal study. This also permits retrospective assessment of prior test-retest studies.<br />Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Details

Language :
English
ISSN :
1477-0334
Volume :
33
Issue :
2
Database :
MEDLINE
Journal :
Statistical methods in medical research
Publication Type :
Academic Journal
Accession number :
38298010
Full Text :
https://doi.org/10.1177/09622802241227959