Back to Search
Start Over
MCD-Net: Toward RGB-D Video Inpainting in Real-World Scenes.
- Source :
-
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society [IEEE Trans Image Process] 2024; Vol. 33, pp. 1095-1108. Date of Electronic Publication: 2024 Feb 05. - Publication Year :
- 2024
-
Abstract
- Video inpainting gains an increasing amount of attention ascribed to its wide applications in intelligent video editing. However, despite tremendous progress made in RGB video inpainting, the existing RGB-D video inpainting models are still incompetent to inpaint real-world RGB-D videos, as they simply fuse color and depth via explicit feature concatenation, neglecting the natural modality gap. Moreover, current RGB-D video inpainting datasets are synthesized with homogeneous and delusive RGB-D data, which is far from real-world application and cannot provide comprehensive evaluation. To alleviate these problems and achieve real-world RGB-D video inpainting, on one hand, we propose a Mutually-guided Color and Depth Inpainting Network (MCD-Net), where color and depth are reciprocally leveraged to inpaint each other implicitly, mitigating the modality gap and fully exploiting cross-modal association for inpainting. On the other hand, we build a Video Inpainting with Depth (VID) dataset to supply diverse and authentic RGB-D video data with various object annotation masks to enable comprehensive evaluation for RGB-D video inpainting under real-world scenes. Experimental results on the DynaFill benchmark and our collected VID dataset demonstrate our MCD-Net not only yields the state-of-the-art quantitative performance but successfully achieves high-quality RGB-D video inpainting under real-world scenes. All resources are available at https://github.com/JCATCV/MCD-Net.
Details
- Language :
- English
- ISSN :
- 1941-0042
- Volume :
- 33
- Database :
- MEDLINE
- Journal :
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
- Publication Type :
- Academic Journal
- Accession number :
- 38294916
- Full Text :
- https://doi.org/10.1109/TIP.2024.3358675