Back to Search Start Over

Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation.

Authors :
Mistriotis P
Wisniewski EO
Si BR
Kalab P
Konstantopoulos K
Source :
Trends in cell biology [Trends Cell Biol] 2024 Oct; Vol. 34 (10), pp. 809-825. Date of Electronic Publication: 2024 Jan 29.
Publication Year :
2024

Abstract

Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.<br />Competing Interests: Declaration of interests The authors declare no financial interest for the work presented in this article.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-3088
Volume :
34
Issue :
10
Database :
MEDLINE
Journal :
Trends in cell biology
Publication Type :
Academic Journal
Accession number :
38290913
Full Text :
https://doi.org/10.1016/j.tcb.2024.01.001