Back to Search Start Over

Clinical Utility of Breast Ultrasound Images Synthesized by a Generative Adversarial Network.

Authors :
Zama S
Fujioka T
Yamaga E
Kubota K
Mori M
Katsuta L
Yashima Y
Sato A
Kawauchi M
Higuchi S
Kawanishi M
Ishiba T
Oda G
Nakagawa T
Tateishi U
Source :
Medicina (Kaunas, Lithuania) [Medicina (Kaunas)] 2023 Dec 21; Vol. 60 (1). Date of Electronic Publication: 2023 Dec 21.
Publication Year :
2023

Abstract

Background and Objectives: This study compares the clinical properties of original breast ultrasound images and those synthesized by a generative adversarial network (GAN) to assess the clinical usefulness of GAN-synthesized images.<br />Materials and Methods: We retrospectively collected approximately 200 breast ultrasound images for each of five representative histological tissue types (cyst, fibroadenoma, scirrhous, solid, and tubule-forming invasive ductal carcinomas) as training images. A deep convolutional GAN (DCGAN) image-generation model synthesized images of the five histological types. Two diagnostic radiologists (reader 1 with 13 years of experience and reader 2 with 7 years of experience) were given a reading test consisting of 50 synthesized and 50 original images (≥1-month interval between sets) to assign the perceived histological tissue type. The percentages of correct diagnoses were calculated, and the reader agreement was assessed using the kappa coefficient.<br />Results: The synthetic and original images were indistinguishable. The correct diagnostic rates from the synthetic images for readers 1 and 2 were 86.0% and 78.0% and from the original images were 88.0% and 78.0%, respectively. The kappa values were 0.625 and 0.650 for the synthetic and original images, respectively. The diagnoses made from the DCGAN synthetic images and original images were similar.<br />Conclusion: The DCGAN-synthesized images closely resemble the original ultrasound images in clinical characteristics, suggesting their potential utility in clinical education and training, particularly for enhancing diagnostic skills in breast ultrasound imaging.

Details

Language :
English
ISSN :
1648-9144
Volume :
60
Issue :
1
Database :
MEDLINE
Journal :
Medicina (Kaunas, Lithuania)
Publication Type :
Academic Journal
Accession number :
38276048
Full Text :
https://doi.org/10.3390/medicina60010014