Back to Search Start Over

Tailored Polypyrrole Nanofibers as Ion-to-Electron Transduction Membranes for Wearable K + Sensors.

Authors :
Yang Y
Lv TR
Zhang WH
Zhang JY
Yin MJ
An QF
Source :
Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Jun; Vol. 20 (26), pp. e2311802. Date of Electronic Publication: 2024 Jan 23.
Publication Year :
2024

Abstract

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K <superscript>+</superscript> ) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K <superscript>+</superscript> detection in the sweat. Herein, a wearable K <superscript>+</superscript> sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K <superscript>+</superscript> fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K <superscript>+</superscript> sensor achieved a high sensitivity of 62 mV decade <superscript>-1</superscript> , good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K <superscript>+</superscript> fluctuation in the human sweat.<br /> (© 2024 Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
1613-6829
Volume :
20
Issue :
26
Database :
MEDLINE
Journal :
Small (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
38258398
Full Text :
https://doi.org/10.1002/smll.202311802