Back to Search Start Over

Fluorescent Ligand Equilibrium Displacement: A High-Throughput Method for Identification of FMN Riboswitch-Binding Small Molecules.

Authors :
Tidwell ED
Kilde IR
Leskaj S
Koutmos M
Source :
International journal of molecular sciences [Int J Mol Sci] 2024 Jan 06; Vol. 25 (2). Date of Electronic Publication: 2024 Jan 06.
Publication Year :
2024

Abstract

Antibiotic resistance remains a pressing global concern, with most antibiotics targeting the bacterial ribosome or a limited range of proteins. One class of underexplored antibiotic targets is bacterial riboswitches, structured RNA elements that regulate key biosynthetic pathways by binding a specific ligand. We developed a methodology termed Fluorescent Ligand Equilibrium Displacement (FLED) to rapidly discover small molecules that bind the flavin mononucleotide (FMN) riboswitch. FLED leverages intrinsically fluorescent FMN and the quenching effect on RNA binding to create a label-free, in vitro method to identify compounds that can bind the apo population of riboswitch in a system at equilibrium. The response difference between known riboswitch ligands and controls demonstrates the robustness of the method for high-throughput screening. An existing drug discovery library that was screened using FLED resulted in a final hit rate of 0.67%. The concentration response of each hit was determined and revealed a variety of approximate effective concentration values. Our preliminary screening data support the use of FLED to identify small molecules for medicinal chemistry development as FMN riboswitch-targeted antibiotic compounds. This robust, label-free, and cell-free method offers a strong alternative to other riboswitch screening methods and can be adapted to a variety of laboratory setups.

Details

Language :
English
ISSN :
1422-0067
Volume :
25
Issue :
2
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
38255809
Full Text :
https://doi.org/10.3390/ijms25020735