Back to Search Start Over

Influence of perinatal and childhood exposure to tobacco and mercury in children's gut microbiota.

Authors :
Pérez-Castro S
D'Auria G
Llambrich M
Fernández-Barrés S
Lopez-Espinosa MJ
Llop S
Regueiro B
Bustamante M
Francino MP
Vrijheid M
Maitre L
Source :
Frontiers in microbiology [Front Microbiol] 2024 Jan 05; Vol. 14, pp. 1258988. Date of Electronic Publication: 2024 Jan 05 (Print Publication: 2023).
Publication Year :
2024

Abstract

Background: Early life determinants of the development of gut microbiome composition in infants have been widely investigated; however, if early life pollutant exposures, such as tobacco or mercury, have a persistent influence on the gut microbial community, its stabilization at later childhood remains largely unknown.<br />Objective: In this exposome-wide study, we aimed at identifying the contribution of exposure to tobacco and mercury from the prenatal period to childhood, to individual differences in the fecal microbiome composition of 7-year-old children, considering co-exposure to a width of established lifestyle and clinical determinants.<br />Methods: Gut microbiome was studied by 16S rRNA amplicon sequencing in 151 children at the genus level. Exposure to tobacco was quantified during pregnancy through questionnaire (active tobacco consumption, second-hand smoking -SHS) and biomonitoring (urinary cotinine) at 4 years (urinary cotinine, SHS) and 7 years (SHS). Exposure to mercury was quantified during pregnancy (cord blood) and at 4 years (hair). Forty nine other potential environmental determinants (12 at pregnancy/birth/infancy, 15 at 4 years and 22 at 7 years, such as diet, demographics, quality of living/social environment, and clinical records) were registered. We used multiple models to determine microbiome associations with pollutants including multi-determinant multivariate analysis of variance and linear correlations (wUnifrac, Bray-Curtis and Aitchison ß-diversity distances), single-pollutant permutational multivariate analysis of variance adjusting for co-variates (Aitchison), and multivariable association model with single taxa (MaAsLin2; genus). Sensitivity analysis was performed including genetic data in a subset of 107 children.<br />Results: Active smoking in pregnancy was systematically associated with microbiome composition and ß-diversity ( R <superscript>2</superscript> 2-4%, p  < 0.05, Aitchison), independently of other co-determinants. However, in the adjusted single pollutant models (PERMANOVA), we did not find any significant association. An increased relative abundance of Dorea and decreased relative abundance of Akkermansia were associated with smoking during pregnancy ( q  < 0.05).<br />Discussion: Our findings suggest a long-term sustainable effect of prenatal tobacco exposure on the children's gut microbiota. This effect was not found for mercury exposure or tobacco exposure during childhood. Assessing the role of these exposures on the children's microbiota, considering multiple environmental factors, should be further investigated.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2024 Pérez-Castro, D’Auria, Llambrich, Fernández-Barrés, Lopez-Espinosa, Llop, Regueiro, Bustamante, Francino, Vrijheid and Maitre.)

Details

Language :
English
ISSN :
1664-302X
Volume :
14
Database :
MEDLINE
Journal :
Frontiers in microbiology
Publication Type :
Academic Journal
Accession number :
38249448
Full Text :
https://doi.org/10.3389/fmicb.2023.1258988