Back to Search Start Over

A Combination of Four Nuclear Targeted Effectors Protects Toxoplasma Against Interferon Gamma Driven Human Host Cell Death During Acute Infection.

Authors :
Henry B
Sibley LD
Rosenberg A
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Dec 25. Date of Electronic Publication: 2023 Dec 25.
Publication Year :
2023

Abstract

In both mice and humans, Type II interferon-gamma (IFNγ) is crucial for regulation of Toxoplasma gondii ( T. gondii ) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the hosťs immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent host cell death and parasite premature egress in human cells stimulated with IFNγ postinfection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii , it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.<br />Competing Interests: Conflicts: The authors declare no conflicts.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
38234811
Full Text :
https://doi.org/10.1101/2023.12.24.573224