Back to Search Start Over

Hemicellulose-based nanoaggregate-incorporated biocompatible hydrogels with enhanced mechanical properties and sustained controlled curcumin release behaviors.

Authors :
Shen F
Ge W
Ling H
Yang Y
Chen R
Wang X
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Feb; Vol. 259 (Pt 2), pp. 129445. Date of Electronic Publication: 2024 Jan 15.
Publication Year :
2024

Abstract

Local drug delivery has generated considerable interest due to its controlled and sustained drug release at the target site on demand. Nanoaggregate-incorporated composite hydrogels are desirable as local drug delivery systems; however, it is difficult to achieve sustained and controlled hydrophobic drug release and superior mechanical properties in one system. Herein, a "smart" composite hydrogel was synthesized by incorporating hemicellulose-based nanoaggregates into a double network consisting of alginate/Ca <superscript>2+</superscript> and polyacrylic acid-co-dimethylaminoethyl methacrylate [P(AA-co-DMAEMA)]. Hemicellulose-based nanoaggregates were assembled from xylan-rich hemicellulose laurate methacrylate (XH-LA-MA) polymers and entrapped into the hydrogel framework via chemical fixation. Another composite hydrogel with physically embedded hemicellulose laurate (XH-LA) nanoaggregates was prepared as a comparison. Accordingly, covalently cross-linked XH-LA-MA nanoaggregates in hydrogels resulted in a denser pore structure and reinforced mechanical properties. Nanoaggregate diffusion analysis revealed that covalent bonding between the nanoaggregates and the hydrogel framework contributed to prolonged diffusion behavior. Curcumin (Cur)-loaded XH-LA-MA composite hydrogels enabled sustained Cur release in simulated body fluid and showed stimulus responsiveness toward ethylenediaminetetraacetic acid (EDTA) and/or glutathione (GSH). All the composite hydrogels were biocompatible, as verified by Cell Counting Kit-8 (CCK-8) assay against NIH/3T3 cells. These composite hydrogels hold great potential as a promising dosage form for biomedical applications.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
259
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38232865
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.129445