Back to Search Start Over

Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study.

Authors :
Masuda T
Inaniwa T
Source :
Physics in medicine and biology [Phys Med Biol] 2024 Feb 05; Vol. 69 (4). Date of Electronic Publication: 2024 Feb 05.
Publication Year :
2024

Abstract

Objective . Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges. Approach . Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams. Main results . For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases. Significance. From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.<br /> (© 2024 Institute of Physics and Engineering in Medicine.)

Details

Language :
English
ISSN :
1361-6560
Volume :
69
Issue :
4
Database :
MEDLINE
Journal :
Physics in medicine and biology
Publication Type :
Academic Journal
Accession number :
38232394
Full Text :
https://doi.org/10.1088/1361-6560/ad1f87