Back to Search
Start Over
A tradeoff evolution between acoustic fat bodies and skull muscles in toothed whales.
- Source :
-
Gene [Gene] 2024 Apr 05; Vol. 901, pp. 148167. Date of Electronic Publication: 2024 Jan 13. - Publication Year :
- 2024
-
Abstract
- Toothed whales have developed specialized echolocation abilities that are crucial for underwater activities. Acoustic fat bodies, including the melon, extramandibular fat body, and intramandibular fat body, are vital for echolocation. This study explores the transcriptome of acoustic fat bodies in toothed whales, revealing some insight into their evolutionary origins and ecological significance. Comparative transcriptome analysis of acoustic fat bodies and related tissues in a harbor porpoise and a Pacific white-sided dolphin reveals that acoustic fat bodies possess characteristics of both muscle and adipose tissue, occupying an intermediate position. The melon and extramandibular fat body exhibit specific muscle-related functions, implying an evolutionary connection between acoustic fat bodies and muscle tissue. Furthermore, we suggested that the melon and extramandibular fat body originate from intramuscular adipose tissue, a component of white adipose tissue. The extramandibular fat body has been identified as an evolutionary homolog of the masseter muscle, supported by the specific expression of MYH16, a pivotal protein in masticatory muscles. The intramandibular fat body, located within the mandibular foramen, shows possibilities of the presence of several immune-related functions, likely due to its proximity to bone marrow. Furthermore, this study sheds light on leucine modification in the catabolic pathway, which leads to the accumulation of isovaleric acid in acoustic fat bodies. Swallowing without chewing, a major toothed whale feeding ecology adaptation, makes the masticatory muscle redundant and leads to the formation of the extramandibular fat body. We propose that the intramuscular fat enlargement in facial muscles, which influences acoustic fat body development, is potentially related to the substantial reorganization of head morphology in toothed whales during aquatic adaptation.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier B.V.)
Details
- Language :
- English
- ISSN :
- 1879-0038
- Volume :
- 901
- Database :
- MEDLINE
- Journal :
- Gene
- Publication Type :
- Academic Journal
- Accession number :
- 38224921
- Full Text :
- https://doi.org/10.1016/j.gene.2024.148167