Back to Search Start Over

Cell-permeable PI3 kinase competitive peptide inhibits KIT mutant mediated tumorigenesis of gastrointestinal stromal tumor (GIST).

Authors :
Jiang Z
Guo Y
Shi J
Zhang S
Zhang L
Wang Y
Li G
Bai R
Zhao H
Sun J
Source :
Molecular biology reports [Mol Biol Rep] 2024 Jan 11; Vol. 51 (1), pp. 98. Date of Electronic Publication: 2024 Jan 11.
Publication Year :
2024

Abstract

Background: Mutations in the receptor tyrosine kinase KIT are the main cause of gastrointestinal stromal tumor (GIST), and the KIT mutants mediated PI3 kinase activation plays a key role in the tumorigenesis of GIST. In this study, we aimed to block PI3 kinase activation by cell-permeable peptide and investigate its possible application in the treatment of GIST.<br />Methods and Results: We designed cell-permeable peptides based on the binding domain of PI3 kinase subunit p85 to KIT or PI3 kinase subunit p110, respectively, in order to compete for the binding between p85 and KIT or p110 and therefore inhibit the activation of PI3 kinases mediated by KIT. The results showed that the peptide can penetrate the cells, and inhibit the activation of PI3 kinases, leading to reduced cell survival and cell proliferation mediated by KIT mutants in vitro. Treatment of mice carrying germline KIT/V558A mutation, which can develop GIST, with the peptide that can compete for the binding between p85 and p110, led to reduced tumorigenesis of GIST. The peptide can further enhance the inhibition of the tumor growth by imatinib which is used as the first line targeted therapy of GIST.<br />Conclusions: Our results showed that cell-permeable PI3 kinase competitive peptide can inhibit KIT-mediated PI3 kinase activation and tumorigenesis of GIST, providing a rationale to further test the peptide in the treatment of GIST and even other tumors with over-activation of PI3 kinases.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)

Details

Language :
English
ISSN :
1573-4978
Volume :
51
Issue :
1
Database :
MEDLINE
Journal :
Molecular biology reports
Publication Type :
Academic Journal
Accession number :
38206538
Full Text :
https://doi.org/10.1007/s11033-023-09120-x