Back to Search Start Over

Chimeric PRMT6 protein produced by an endogenous retrovirus promoter regulates cell fate decision in mouse preimplantation embryos†.

Authors :
Honda S
Hatamura M
Kunimoto Y
Ikeda S
Minami N
Source :
Biology of reproduction [Biol Reprod] 2024 Apr 11; Vol. 110 (4), pp. 698-710.
Publication Year :
2024

Abstract

Murine endogenous retrovirus with leucine tRNA primer, also known as MERVL, is expressed during zygotic genome activation in mammalian embryos. Here we show that protein arginine N-methyltransferase 6 (Prmt6) forms a chimeric transcript with MT2B2, one of the long terminal repeat sequences of murine endogenous retrovirus with leucine tRNA primer, and is translated into an elongated chimeric protein (PRMT6MT2B2) whose function differs from that of the canonical PRMT6 protein (PRMT6CAN) in mouse preimplantation embryos. Overexpression of PRMT6CAN in fibroblast cells increased asymmetric dimethylation of the third arginine residue of both histone H2A (H2AR3me2a) and histone H4 (H4R3me2a), while overexpression of PRMT6MT2B2 increased only H2AR3me2a. In addition, overexpression of PRMT6MT2B2 in one blastomere of mouse two-cell embryos promoted cell proliferation and differentiation of the blastomere into epiblast cells at the blastocyst stage, while overexpression of PRMT6CAN repressed cell proliferation. This is the first report of the translation of a chimeric protein (PRMT6MT2B2) in mouse preimplantation embryos. Our results suggest that analyzing chimeric transcripts with murine endogenous retrovirus with leucine tRNA primer will provide insight into the relationship between zygotic genome activation and subsequent intra- and extra-cellular lineage determination.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1529-7268
Volume :
110
Issue :
4
Database :
MEDLINE
Journal :
Biology of reproduction
Publication Type :
Academic Journal
Accession number :
38196172
Full Text :
https://doi.org/10.1093/biolre/ioae002