Back to Search
Start Over
In-based coordination polymer-derived carbon nanoribbons with abundant CoP nanoparticles in carbon nanotubes for water oxidation.
- Source :
-
The Journal of chemical physics [J Chem Phys] 2024 Jan 14; Vol. 160 (2). - Publication Year :
- 2024
-
Abstract
- The sluggish oxygen evolution reaction (OER) in overall electrocatalytic water splitting poses a significant challenge in hydrogen production. A series of transition metal phosphides are emerging as promising electrocatalysts, effectively modulating the charge distribution of surrounding atoms for OER. In this study, a highly efficient OER electrocatalyst (CoP-CNR-CNT) was successfully synthesized through the pyrolysis and phosphatization of a Co-doped In-based coordination polymer, specifically InOF-25. This process resulted in evenly dispersed CoP nanoparticles encapsulated in coordination polymer-derived carbon nanoribbons. The synthesized CoP-CNR-CNT demonstrated a competitive OER activity with a smaller overpotential (η10) of 295.7 mV at 10 mA cm-2 and a satisfactory long-term stability compared to the state-of-the-art RuO2 (η10 = 353.7 mV). The high OER activity and stability can be attributed to the high conductivity of the carbon network, the abundance of CoP particles, and the intricate nanostructure of nanoribbons/nanotubes. This work provides valuable insights into the rational design and facile preparation of efficient non-precious metal-based OER electrocatalysts from inorganic-organic coordination polymers, with potential applications in various energy conversion and storage systems.<br /> (© 2024 Author(s). Published under an exclusive license by AIP Publishing.)
Details
- Language :
- English
- ISSN :
- 1089-7690
- Volume :
- 160
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- The Journal of chemical physics
- Publication Type :
- Academic Journal
- Accession number :
- 38189618
- Full Text :
- https://doi.org/10.1063/5.0185031