Back to Search Start Over

Electrospun polydioxanone/fucoidan blend nanofibers loaded with anti-cancer precipitate from Jaspis diastra and paclitaxel: Physico-chemical characterization and in-vitro screening.

Authors :
Ramanjooloo A
Chummun Phul I
Goonoo N
Bhaw-Luximon A
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Feb; Vol. 259 (Pt 1), pp. 129218. Date of Electronic Publication: 2024 Jan 05.
Publication Year :
2024

Abstract

Nanofibers for drug delivery systems have gained much attention during the past years. This paper describes for the first time the loading of a bioactive precipitate (JAD) from the marine sponge Jaspis diastra in PDX and fucoidan-PDX. JAD was characterized by LC-MS/MS and the major component was jaspamide (1) with a purity of 62.66 %. The cytotoxicity of JAD was compared with paclitaxel (PTX). JAD and PTX displayed IC <subscript>50</subscript> values of 1.10 ± 0.7 μg/mL and 0.21 ± 0.12 μg/mL on skin fibroblasts L929 cells whilst their IC <subscript>50</subscript> values on uveal MP41 cancer cells, were 2.10 ± 0.55 μg/mL and 1.38 ± 0.68 μg/mL, respectively. JAD was found to be less cytotoxic to healthy fibroblasts compared to PTX. JAD and PTX loaded scaffolds showed sustained release over 96 h in physiological medium which is likely to reduce the secondary cytotoxic effect induced by JAD and PTX alone. The physico-chemical properties of the loaded and unloaded scaffolds together with their degradation and action on tumor microenvironment by using L929 and MP41 cells were investigated. JAD and PTX at a concentration of 0.5 % (drug/polymer, w/w) in the electrospun mats prevented growth and proliferation of L929 and MP41 cells. Co-culture of L929 and MP41 showed that the JAD and PTX loaded mats inhibited the growth of both cells and caused cell death.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
259
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38185297
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.129218