Back to Search
Start Over
Methylcellulose/chitosan nanofiber-based composites doped with lactoferrin-loaded Ag-MOF nanoparticles for the preservation of fresh apple.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2024 Feb; Vol. 259 (Pt 2), pp. 129182. Date of Electronic Publication: 2024 Jan 02. - Publication Year :
- 2024
-
Abstract
- Increasing demand for high-quality fresh fruits and vegetables has led to the development of innovative active packaging materials that exhibit controlled release of antimicrobial/antioxidant agents. In this study, composite biopolymer films consisting of methylcellulose (MC) and chitosan nanofibers (ChNF) were fabricated, which contained lactoferrin (LAC)-loaded silver-metal organic framework (Ag-MOF) nanoparticles. The results indicated that the nanoparticles were uniformly distributed throughout the biopolymer films, which led to improvements in tensile strength (56.1 ± 3.2 MPa), thermal stability, water solubility, swelling index, water vapor barrier properties (from 2.2 ± 2.1 to 1.9 ± 1.9 × 10 <superscript>-11</superscript>  g. m/m <superscript>2</superscript> . s. Pa), and UV-shielding effects. The Ag-MOF-LAC2% films also exhibited strong and long-lasting antibacterial activity against E. coli (19.8 ± 5.2 mm) and S. aureus (20.1 ± 3.2 mm), which was attributed to the slow release of antimicrobial LAC from the films. The composite films were shown to maintain the fresh appearance of apples for at least seven days, which was attributed to their antimicrobial and antioxidant activities. Consequently, these composite films have the potential in the assembly of innovative active packaging materials for protecting fresh fruits and vegetables. However, further work is required to ensure their safety and economic viability.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 259
- Issue :
- Pt 2
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 38176499
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2023.129182