Back to Search Start Over

Multi-criteria decision making to validate performance of RBC-based formulae to screen [Formula: see text]-thalassemia trait in heterogeneous haemoglobinopathies.

Authors :
Jain AK
Sharma P
Saleh S
Dolai TK
Saha SC
Bagga R
Khadwal AR
Trehan A
Nielsen I
Kaviraj A
Das R
Saha S
Source :
BMC medical informatics and decision making [BMC Med Inform Decis Mak] 2024 Jan 02; Vol. 24 (1), pp. 5. Date of Electronic Publication: 2024 Jan 02.
Publication Year :
2024

Abstract

Background: India has the most significant number of children with thalassemia major worldwide, and about 10,000-15,000 children with the disease are born yearly. Scaling up e-health initiatives in rural areas using a cost-effective digital tool to provide healthcare access for all sections of people remains a challenge for government or semi-governmental institutions and agencies.<br />Methods: We compared the performance of a recently developed formula SCS[Formula: see text] and its web application SUSOKA with 42 discrimination formulae presently available in the literature. 6,388 samples were collected from the Postgraduate Institute of Medical Education and Research, Chandigarh, in North-Western India. Performances of the formulae were evaluated by eight different measures: sensitivity, specificity, Youden's Index, AUC-ROC, accuracy, positive predictive value, negative predictive value, and false omission rate. Three multi-criteria decision-making (MCDM) methods, TOPSIS, COPRAS, and SECA, were implemented to rank formulae by ensuring a trade-off among the eight measures.<br />Results: MCDM methods revealed that the Shine & Lal and SCS[Formula: see text] were the best-performing formulae. Further, a modification of the SCS[Formula: see text] formula was proposed, and validation was conducted with a data set containing 939 samples collected from Nil Ratan Sircar (NRS) Medical College and Hospital, Kolkata, in Eastern India. Our two-step approach emphasized the necessity of a molecular diagnosis for a lower number of the population. SCS[Formula: see text] along with the condition MCV[Formula: see text] 80 fl was recommended for a higher heterogeneous population set. It was found that SCS[Formula: see text] can classify all BTT samples with 100% sensitivity when MCV[Formula: see text] 80 fl.<br />Conclusions: We addressed the issue of how to integrate the higher-ranked formulae in mass screening to ensure higher performance through the MCDM approach. In real-life practice, it is sufficient for a screening algorithm to flag a particular sample as requiring or not requiring further specific confirmatory testing. Implementing discriminate functions in routine screening programs allows early identification; consequently, the cost will decrease, and the turnaround time in everyday workflows will also increase. Our proposed two-step procedure expedites such a process. It is concluded that for mass screening of BTT in a heterogeneous set of data, SCS[Formula: see text] and its web application SUSOKA can provide 100% sensitivity when MCV[Formula: see text] 80 fl.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
1472-6947
Volume :
24
Issue :
1
Database :
MEDLINE
Journal :
BMC medical informatics and decision making
Publication Type :
Academic Journal
Accession number :
38167309
Full Text :
https://doi.org/10.1186/s12911-023-02388-w