Back to Search Start Over

Continuation of a cleaning process: Application of MNBs-coagulation process to mitigate ultrafiltration membrane fouling.

Authors :
Huang X
Chen K
Zhang Z
Pang H
Huang X
Yang J
Wang X
Lu J
Source :
Water research [Water Res] 2024 Feb 15; Vol. 250, pp. 121032. Date of Electronic Publication: 2023 Dec 18.
Publication Year :
2024

Abstract

The MNBs-coagulation process as a novel and cleaning enhanced coagulation process has been demonstrated to enhance the removal efficiency of hydrophilic organics. In this study, while continuing the concept of cleaning production, the MNBs-coagulation process was first applied to the ultrafiltration process and was expected to alleviate the ultrafiltration membrane fouling. This study investigated the effect of the involvement of MNBs in coagulation-ultrafiltration process (the MC-UF process) on the fouling behaviour of ultrafiltration membrane based on the calculation of membrane resistance distribution and the fitting of membrane fouling model. In addition, the NOM removal efficiency, floc characteristics analysis and membrane hydrophilicity analysis were used to illustrate the mechanism of mitigating ultrafiltration mebrane fouling by the MC-UF process. The experimental results showed that the involvement of MNBs in the coagulation-ultrafiltration process was able to reduce the irreversible fouling and TMP by 43.1 % and 41.6 % respectively. This phenomenon could be attributed to the involvement of MNBs in the coagulation process to improve the removal efficiency of hydrophilic organics and to enhance the characteristics of flocs, thus reducing the possibility of hydrophilic organics and broken flocs entering and blocking the membrane pores. In addition, the FT-IR spectral changes before and after the floc breakage were analyzed by 2D-COS technique in this study, and it was found for the first time that the participation of MNBs in the coagulation process could change the sequence of functional group transformation within the floc, and promote the generation of hydrogen bonds between flocs by hindering the generation of hydroxyl groups (-OH), and improve the shear resistance and regrowth capacity of flocs while reducing the possibility of broken flocs entering and blocking membrane pores. In summary, the MC-UF process proposed in this study can significantly mitigate ultrafiltration membrane fouling while meeting cleaning production, providing theoretical support for the application of the process to practical engineering.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
1879-2448
Volume :
250
Database :
MEDLINE
Journal :
Water research
Publication Type :
Academic Journal
Accession number :
38157598
Full Text :
https://doi.org/10.1016/j.watres.2023.121032