Back to Search Start Over

Targeting the tissue factor coagulation initiation complex prevents antiphospholipid antibody development.

Authors :
Müller-Calleja N
Grunz K
Nguyen TS
Posma J
Pedrosa D
Meineck M
Hollerbach A
Braun J
Muth S
Schild H
Saar K
Hübner N
Krishnaswamy S
Royce J
Teyton L
Lemmermann N
Weinmann-Menke J
Lackner KJ
Ruf W
Source :
Blood [Blood] 2024 Mar 21; Vol. 143 (12), pp. 1167-1180.
Publication Year :
2024

Abstract

Abstract: Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.<br /> (© 2024 American Society of Hematology. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.)

Details

Language :
English
ISSN :
1528-0020
Volume :
143
Issue :
12
Database :
MEDLINE
Journal :
Blood
Publication Type :
Academic Journal
Accession number :
38142429
Full Text :
https://doi.org/10.1182/blood.2023022276