Back to Search Start Over

A Synergic Strategy: Adipose-Derived Stem Cell Spheroids Seeded on 3D-Printed PLA/CHA Scaffolds Implanted in a Bone Critical-Size Defect Model.

Authors :
Kronemberger GS
Palhares TN
Rossi AM
Verçosa BRF
Sartoretto SC
Resende R
Uzeda MJ
Alves ATNN
Alves GG
Calasans-Maia MD
Granjeiro JM
Baptista LS
Source :
Journal of functional biomaterials [J Funct Biomater] 2023 Nov 21; Vol. 14 (12). Date of Electronic Publication: 2023 Nov 21.
Publication Year :
2023

Abstract

Bone critical-size defects and non-union fractures have no intrinsic capacity for self-healing. In this context, the emergence of bone engineering has allowed the development of functional alternatives. The aim of this study was to evaluate the capacity of ASC spheroids in bone regeneration using a synergic strategy with 3D-printed scaffolds made from poly (lactic acid) (PLA) and nanostructured hydroxyapatite doped with carbonate ions (CHA) in a rat model of cranial critical-size defect. In summary, a set of results suggests that ASC spheroidal constructs promoted bone regeneration. In vitro results showed that ASC spheroids were able to spread and interact with the 3D-printed scaffold, synthesizing crucial growth factors and cytokines for bone regeneration, such as VEGF. Histological results after 3 and 6 months of implantation showed the formation of new bone tissue in the PLA/CHA scaffolds that were seeded with ASC spheroids. In conclusion, the presence of ASC spheroids in the PLA/CHA 3D-printed scaffolds seems to successfully promote bone formation, which can be crucial for a significant clinical improvement in critical bone defect regeneration.

Details

Language :
English
ISSN :
2079-4983
Volume :
14
Issue :
12
Database :
MEDLINE
Journal :
Journal of functional biomaterials
Publication Type :
Academic Journal
Accession number :
38132809
Full Text :
https://doi.org/10.3390/jfb14120555