Back to Search Start Over

Preparation and characterization of EI-Co/Zr@AC and the mechanisms underlying its removal for atrazine in aqueous solution.

Authors :
Yang X
Liu D
He H
Zou J
Wang D
Zhang L
Tang Y
Source :
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jan; Vol. 31 (4), pp. 5116-5131. Date of Electronic Publication: 2023 Dec 19.
Publication Year :
2024

Abstract

Atrazine, a widely used herbicide in agriculture, is detrimental to both the ecological environment and human health owing to its extensive use, poor degradability, and biotoxicity. The technology commonly used to remove atrazine from water is activated carbon adsorption, but it has the problems of difficult recovery, secondary contamination, and a low removal rate. To efficiently remove atrazine from agricultural wastewater, in this study, a new environmental material, embedding immobilization (EI)-Co- and Zr-modified activated carbon powder (Co/Zr@AC), was prepared by immobilizing the bimetallic Co/Zr@AC via EI technique and employed to remove atrazine. When preparing EI-Co/Zr@AC, the single-factor experiment was conducted and determined the optimal preparation conditions: sodium alginate 2.5% (wt), calcium chloride 4.0% (wt), Co/Zr@AC 1.0% (wt), and bentonite 2.0% (wt). The prepared EI-Co/Zr@AC has a three-dimensional mesh structure and many pores and also possesses good mass transfer performance and mechanical properties. The removal efficiency by EI-Co/Zr@AC for the removal of 5.0 mg/L atrazine from 50 mL was 94.1% at pH 7.0 and 25°C, with an EI-Co/Zr@AC dosage of 0.8 g. The mechanistic study showed that the pseudo-second-order kinetic model could describe the removal process better than the pseudo-first-order kinetic model, and the Freundlich isotherm model fit better than other isotherm models. Additionally, the synthesized EI-Co/Zr@AC spheres demonstrated good reusability, with the atrazine removal rate remaining 70.4% after five cycles, and the mechanical properties of the spheres were stable.<br /> (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1614-7499
Volume :
31
Issue :
4
Database :
MEDLINE
Journal :
Environmental science and pollution research international
Publication Type :
Academic Journal
Accession number :
38112872
Full Text :
https://doi.org/10.1007/s11356-023-31544-y