Back to Search Start Over

The Effect of Conformational Freedom vs Restriction on the Rate in Asymmetric Hydrogenation: Iridium-Catalyzed Regio- and Enantioselective Monohydrogenation of Dienones.

Authors :
Zheng J
Peters BBC
Jiang W
Suàrez LA
Ahlquist MSG
Singh T
Andersson PG
Source :
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2024 Mar 01; Vol. 30 (13), pp. e202303406. Date of Electronic Publication: 2024 Jan 12.
Publication Year :
2024

Abstract

Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.<br /> (© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1521-3765
Volume :
30
Issue :
13
Database :
MEDLINE
Journal :
Chemistry (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
38109038
Full Text :
https://doi.org/10.1002/chem.202303406