Back to Search Start Over

Anthropogenic, biogenic, and photochemical influences on surface formaldehyde and its significant decadal (2006-2017) decrease in the Lewiston-Clarkston valley of the northwestern United States.

Authors :
Li R
Jobson BT
Wen M
Li AL
Huangfu Y
Zhang W
Hardy R
O'Keeffe P
Simpson J
Fauci M
Paden N
Source :
Chemosphere [Chemosphere] 2024 Feb; Vol. 349, pp. 140962. Date of Electronic Publication: 2023 Dec 15.
Publication Year :
2024

Abstract

Formaldehyde (HCHO) is a key carcinogen and plays an important role in atmospheric chemistry. Both field measurements and Positive Matrix Factorization (PMF) modeling have been employed to investigate the concentrations and sources of HCHO in the Lewiston-Clarkston (LC) valley of the mountainous northwestern U.S. Different instruments were deployed to measure surface formaldehyde and other related compounds in July of 2016 and 2017. The measurements reveal that the average HCHO concentrations have significantly decreased to 2-5 ppb in the LC valley in comparison to its levels (10-20 ppb) observed in July 2006. This discovery with surface measurements deserves attention given that satellite retrievals showed an increasing long-term trend from 2005 to 2014 in total vertical column density of HCHO in the region, suggesting that satellite instruments may not adequately resolve small valleys in the mountainous region. Our PMF modeling identified four major sources of HCHO in the valley: (1) emissions from a local paper mill, (2) secondary formation and background, (3) biogenic sources, and (4) traffic. This study reveals that the emissions from the paper mill cause high HCHO spikes (6-19 ppb) in the early morning. It is found that biogenic volatile organic compounds (VOCs) in the area are influenced by national forests surrounding the region (e.g., Nez Perce-Clearwater, Umatilla, Wallowa-Whitman, and Idaho Panhandle National Forests). The results provide useful information for developing strategies to control HCHO levels and have implications for future HCHO studies in atmospheric chemistry, which affects secondary aerosols and ozone formation.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
349
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
38104739
Full Text :
https://doi.org/10.1016/j.chemosphere.2023.140962