Back to Search Start Over

ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits.

Authors :
Singh C
Jin B
Shrestha N
Markhard AL
Panda A
Calvo SE
Deik A
Pan X
Zuckerman AL
Ben Saad A
Corey KE
Sjoquist J
Osganian S
AminiTabrizi R
Rhee EP
Shah H
Goldberger O
Mullen AC
Cracan V
Clish CB
Mootha VK
Goodman RP
Source :
Cell metabolism [Cell Metab] 2024 Jan 02; Vol. 36 (1), pp. 144-158.e7. Date of Electronic Publication: 2023 Dec 14.
Publication Year :
2024

Abstract

Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD <superscript>+</superscript> ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.<br />Competing Interests: Declaration of interests V.K.M. and V.C. are listed as inventors on a patent application filed by Massachusetts General Hospital on the therapeutic uses of LbNOX. V.K.M. is a scientific advisor to and receives equity from 5AM Ventures. A.C.M. received research support from Boehringer Ingelheim and GlaxoSmithKline for other projects not related to this work.<br /> (Copyright © 2023 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1932-7420
Volume :
36
Issue :
1
Database :
MEDLINE
Journal :
Cell metabolism
Publication Type :
Academic Journal
Accession number :
38101397
Full Text :
https://doi.org/10.1016/j.cmet.2023.11.010