Back to Search Start Over

Super-Resolution Exciton Imaging of Nanobubbles in 2D Semiconductors with Near-Field Nanophotoluminescence Microscopy.

Authors :
Huang JT
Bai B
Han YX
Feng PY
Wang XJ
Li XZ
Huang GY
Sun HB
Source :
ACS nano [ACS Nano] 2024 Jan 09; Vol. 18 (1), pp. 272-280. Date of Electronic Publication: 2023 Dec 14.
Publication Year :
2024

Abstract

Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, have emerged as important candidate materials for next-generation chip-scale optoelectronic devices with the development of large-scale production techniques, such as chemical vapor deposition (CVD). However, 2D materials need to be transferred to other target substrates after growth, during which various micro- and nanoscale defects, such as nanobubbles, are inevitably generated. These nanodefects not only influence the uniformity of 2D semiconductors but also may significantly alter the local optoelectronic properties of the composed devices. Hence, super-resolution discrimination and characterization of nanodefects are highly demanded. Here, we report a near-field nanophotoluminescence (nano-PL) microscope that can quickly screen nanobubbles and investigate their impact on local excitonic properties of 2D semiconductors by directly visualize the PL emission distribution with a very high spatial resolution of ∼10 nm, far below the optical diffraction limit, and a high speed of 10 ms/point under ambient conditions. By using nano-PL microscopy to map the exciton and trion emission intensity distributions in transferred CVD-grown monolayer tungsten disulfide (1L-WS <subscript>2</subscript> ) flakes, it is found that the PL intensity decreases by 13.4% as the height of the nanobubble increases by every nanometer, which is mainly caused by the suppression of trion emission due to the strong doping effect from the substrate. In addition to the nanobubbles, other types of nanodefects, such as cracks, stacks, and grain boundaries, can also be characterized. The nano-PL method is proven to be a powerful tool for the nondestructive quality inspection of nanodefects as well as the super-resolution exploration of local optoelectronic properties of 2D materials.

Details

Language :
English
ISSN :
1936-086X
Volume :
18
Issue :
1
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
38096138
Full Text :
https://doi.org/10.1021/acsnano.3c06102