Back to Search Start Over

Identification of novel compounds and repurposing of FDA drugs for 1-deoxy-D-xylulose 5-phosphate reductoisomerase enzyme of Plasmodium falciparum to combat malaria resistance.

Authors :
Aziz S
Waqas M
Naz HF
Halim SA
Jan A
Muhsinah AB
Khan A
Al-Harrasi A
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Feb; Vol. 257 (Pt 2), pp. 128672. Date of Electronic Publication: 2023 Dec 11.
Publication Year :
2024

Abstract

The rise of Plasmodium falciparum resistance to Artemisinin-based combination therapies (ACTs) is a significant concern in the fight against malaria. This situation calls for the search for novel anti-malarial candidates. 1-deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) is a potential target involved in various cellular processes in P. falciparum (Pf). We screened ∼0.69 billion novel compounds from the ZINC20 library and repurposed ∼1400 FDA drugs using computational drug discovery methods against PfIspC. Following our computational pipeline, we found five novel ZINC20 compounds (Z-2, Z-3, Z-10, Z-13, and Z-14) and three FDA drugs (Aliskiren, Ceftolozane, and Ombitasvir) that showed striking docking energy (ranging from -8.405 to -10.834 kcal/mol), and strong interactions with key binding site residues (Ser269, Ser270, Ser306, Asn311, Lys312, and Met360) of PfIspC. The novel anti-malarial compounds also exhibited favorable pharmacokinetics and physicochemical properties. Furthermore, through molecular dynamics simulation, we observed the stable dynamics of PfIspC-inhibitor complexes and the influence of inhibitor binding on the protein's conformational arrangements. Notably, the binding free energy estimation confirmed high binding affinity (varied from -11.68 to -33.16 kcal/mol) of these compounds for PfIspC. Our findings could contribute to the ongoing efforts in combating malaria and invite experimental-lab researchers for validation.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
257
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38092105
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.128672