Back to Search Start Over

Donut: Augmentation Technique for Enhancing The Efficacy of Glaucoma Suspect Screening.

Authors :
Sangchocanonta S
Ingpochai S
Puangarom S
Munthuli A
Phienphanich P
Itthipanichpong R
Chansangpetch S
Manassakorn A
Ratanawongphaibul K
Tantisevi V
Rojanapongpun P
Tantibundhit C
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2023 Jul; Vol. 2023, pp. 1-5.
Publication Year :
2023

Abstract

Glaucoma is the second most common cause of blindness. A glaucoma suspect has risk factors that increase the possibility of developing glaucoma. Evaluating a patient with suspected glaucoma is challenging. The "donut method" was developed in this study as an augmentation technique for obtaining high-quality fundus images for training ConvNeXt-Small model. Fundus images from GlauCUTU-DATA, labelled by randomizing at least 3 well-trained ophthalmologists (4 well-trained ophthalmologists in case of no majority agreement) with a unanimous agreement (3/3) and majority agreement (2/3), were used in the experiment. The experimental results from the proposed method showed the training model with the "donut method" increased the sensitivity of glaucoma suspects from 52.94% to 70.59% for the 3/3 data and increased the sensitivity of glaucoma suspects from 37.78% to 42.22% for the 2/3 data. This method enhanced the efficacy of classifying glaucoma suspects in both equalizing sensitivity and specificity sufficiently. Furthermore, three well-trained ophthalmologists agreed that the GradCAM++ heatmaps obtained from the training model using the proposed method highlighted the clinical criteria.Clinical relevance- The donut method for augmentation fundus images focuses on the optic nerve head region for enhancing efficacy of glaucoma suspect screening, and uses Grad-CAM++ to highlight the clinical criteria.

Details

Language :
English
ISSN :
2694-0604
Volume :
2023
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
38083547
Full Text :
https://doi.org/10.1109/EMBC40787.2023.10341115