Back to Search Start Over

Optimization of time series features to estimate brain age in children from electroencephalography.

Authors :
Iyer KK
Roberts JA
Waak M
Kevat A
Chawla J
Lauronen L
Vanhatalo S
Stevenson NJ
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2023 Jul; Vol. 2023, pp. 1-4.
Publication Year :
2023

Abstract

Functional brain age measures in children, derived from the electroencephalogram (EEG), offer direct and objective measures in assessing neurodevelopmental status. Here we explored the effectiveness of 32 preselected 'handcrafted' EEG features in predicting brain age in children. These features were benchmarked against a large library of highly comparative multivariate time series features (>7000 features). Results showed that age predictors based on handcrafted EEG features consistently outperformed a generic set of time series features. These findings suggest that optimization of brain age estimation in children benefits from careful preselection of EEG features that are related to age and neurodevelopmental trajectory. This approach shows potential for clinical translation in the future.Clinical Relevance-Handcrafted EEG features provide an accurate functional neurodevelopmental biomarker that tracks brain function maturity in children.

Details

Language :
English
ISSN :
2694-0604
Volume :
2023
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
38082782
Full Text :
https://doi.org/10.1109/EMBC40787.2023.10340663