Back to Search Start Over

Modulating functionally-distinct vagus nerve fibers using microelectrodes and kilohertz frequency electrical stimulation.

Authors :
Qin P
Lin Q
Xie Y
Chang YC
Zanos S
Wang H
Payne S
Shivdasani MN
Tsai D
Lovell NH
Dokos S
Guo T
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2023 Jul; Vol. 2023, pp. 1-4.
Publication Year :
2023

Abstract

Modulation of functionally distinct nerve fibers with bioelectronic devices provides a therapeutic opportunity for various diseases. In this study, we began by developing a computational model including four major subtypes of myelinated fibers and one unmyelinated fiber. Second, we used an intrafascicular electrode to perform kHz-frequency electric stimulation to preferentially modulate a population of fibers. Our model suggests that fiber physical properties and electrode-to-fascicle distance severely impacts stimulus-response relationships. Large diameter fibers (Aα- and Aβ-) were only minimally influenced by the fascicle size and electrode location, while smaller diameter fibers (Aδ-, B- and C-) indicated a stronger dependency.Clinical Relevance- Our findings support the possibility of selectively modulating functionally-distinct nerve fibers using electrical stimulation in a small, localized region. Our model provides an effective tool to design next-generation implantable devices and therapeutic stimulation strategies toward minimizing off-target effects.

Details

Language :
English
ISSN :
2694-0604
Volume :
2023
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
38082599
Full Text :
https://doi.org/10.1109/EMBC40787.2023.10340796