Back to Search
Start Over
The Effect of SARS-CoV-2 Spike Protein RBD-Epitope on Immunometabolic State and Functional Performance of Cultured Primary Cardiomyocytes Subjected to Hypoxia and Reoxygenation.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2023 Nov 21; Vol. 24 (23). Date of Electronic Publication: 2023 Nov 21. - Publication Year :
- 2023
-
Abstract
- Cardio complications such as arrhythmias and myocardial damage are common in COVID-19 patients. SARS-CoV-2 interacts with the cardiovascular system primarily via the ACE2 receptor. Cardiomyocyte damage in SARS-CoV-2 infection may stem from inflammation, hypoxia-reoxygenation injury, and direct toxicity; however, the precise mechanisms are unclear. In this study, we simulated hypoxia-reoxygenation conditions commonly seen in SARS-CoV-2-infected patients and studied the impact of the SARS-CoV-2 spike protein RBD-epitope on primary rat cardiomyocytes to gain insight into the potential mechanisms underlying COVID-19-related cardiac complications. Cell metabolic activity was evaluated with PrestoBlue <superscript>TM</superscript> . Gene expression of proinflammatory markers was measured by qRT-PCR and their secretion was quantified by Luminex assay. Cardiomyocyte contractility was analysed using the Myocyter plugin of ImageJ. Mitochondrial respiration was determined through Seahorse Mito Stress Test. In hypoxia-reoxygenation conditions, treatment of the SARS-CoV-2 spike RBD-epitope reduced the metabolic activity of primary cardiomyocytes, upregulated Il1β and Cxcl1 expression, and elevated GM-CSF and CCL2 cytokines secretion. Contraction time increased, while amplitude and beating frequency decreased. Acute treatment with a virus RBD-epitope inhibited mitochondrial respiration and lowered ATP production. Under ischaemia-reperfusion, the SARS-CoV-2 RBD-epitope induces cardiomyocyte injury linked to impaired mitochondrial activity.
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 24
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 38068877
- Full Text :
- https://doi.org/10.3390/ijms242316554