Back to Search
Start Over
Metabolic engineering of a stable haploid strain derived from lignocellulosic inhibitor tolerant Saccharomyces cerevisiae natural isolate YB-2625.
- Source :
-
Biotechnology for biofuels and bioproducts [Biotechnol Biofuels Bioprod] 2023 Dec 06; Vol. 16 (1), pp. 190. Date of Electronic Publication: 2023 Dec 06. - Publication Year :
- 2023
-
Abstract
- Background: Significant genetic diversity exists across Saccharomyces strains. Natural isolates and domesticated brewery and industrial strains are typically more robust than laboratory strains when challenged with inhibitory lignocellulosic hydrolysates. These strains also contain genes that are not present in lab strains and likely contribute to their superior inhibitor tolerance. However, many of these strains have poor sporulation efficiencies and low spore viability making subsequent gene analysis, further metabolic engineering, and genomic analyses of the strains challenging. This work aimed to develop an inhibitor tolerant haploid with stable mating type from S. cerevisiae YB-2625, which was originally isolated from bagasse.<br />Results: Haploid spores isolated from four tetrads from strain YB-2625 were tested for tolerance to furfural and HMF. Due to natural mutations present in the HO-endonuclease, all haploid strains maintained a stable mating type. One of the haploids, YRH1946, did not flocculate and showed enhanced tolerance to furfural and HMF. The tolerant haploid strain was further engineered for xylose fermentation by integration of the genes for xylose metabolism at two separate genomic locations (ho∆ and pho13∆). In fermentations supplemented with inhibitors from acid hydrolyzed corn stover, the engineered haploid strain derived from YB-2625 was able to ferment all of the glucose and 19% of the xylose, whereas the engineered lab strains performed poorly in fermentations.<br />Conclusions: Understanding the molecular mechanisms of inhibitor tolerance will aid in developing strains with improved growth and fermentation performance using biomass-derived sugars. The inhibitor tolerant, xylose fermenting, haploid strain described in this work has potential to serve as a platform strain for identifying pathways required for inhibitor tolerance, and for metabolic engineering to produce fuels and chemicals from undiluted lignocellulosic hydrolysates.<br /> (© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
Details
- Language :
- English
- ISSN :
- 2731-3654
- Volume :
- 16
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Biotechnology for biofuels and bioproducts
- Publication Type :
- Academic Journal
- Accession number :
- 38057826
- Full Text :
- https://doi.org/10.1186/s13068-023-02442-9