Back to Search Start Over

Analysis and comparison of machine learning methods for species identification utilizing ATR-FTIR spectroscopy.

Authors :
Zhang X
Yang F
Xiao J
Qu H
Jocelin NF
Ren L
Guo Y
Source :
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2024 Mar 05; Vol. 308, pp. 123713. Date of Electronic Publication: 2023 Dec 02.
Publication Year :
2024

Abstract

Accurate identification of insect species holds paramount significance in diverse fields as it facilitates a comprehensive understanding of their ecological habits, distribution range, and impact on both the environment and humans. While morphological characteristics have traditionally been employed for species identification, the utilization of empty pupariums for this purpose remains relatively limited. In this study, ATR-FTIR was employed to acquire spectral information from empty pupariums of five fly species, subjecting the data to spectral pre-processing to obtain average spectra for preliminary analysis. Subsequently, PCA and OPLS-DA were utilized for clustering and classification. Notably, two wavebands (3000-2800 cm <superscript>-1</superscript> and 1800-1300 cm <superscript>-1</superscript> ) were found to be significant in distinguishing A. grahami. Further, we established three machine learning models, including SVM, KNN, and RF, to analyze spectra from different waveband groups. The biological fingerprint region (1800-1300 cm <superscript>-1</superscript> ) demonstrated a substantial advantage in identifying empty puparium species. Remarkably, the SVM model exhibited an impressive accuracy of 100 % in identifying all five fly species. This study represents the first instance of employing infrared spectroscopy and machine learning methods for identifying insect species using empty pupariums, providing a robust research foundation for future investigations in this area.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3557
Volume :
308
Database :
MEDLINE
Journal :
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Publication Type :
Academic Journal
Accession number :
38056185
Full Text :
https://doi.org/10.1016/j.saa.2023.123713