Back to Search Start Over

Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: A review on recent advancements and challenges.

Authors :
Wu Z
Cao X
Li M
Liu J
Li B
Source :
Chemosphere [Chemosphere] 2024 Feb; Vol. 349, pp. 140843. Date of Electronic Publication: 2023 Dec 01.
Publication Year :
2024

Abstract

This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
349
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
38043611
Full Text :
https://doi.org/10.1016/j.chemosphere.2023.140843