Back to Search Start Over

α-Pyrrolidinononanophenone derivatives induce differentiated SH-SY5Y neuroblastoma cell apoptosis via reduction of antioxidant capacity: Involvement of NO depletion and inactivation of Nrf2/HO1 signaling pathway.

Authors :
Sakai Y
Egawa D
Hattori J
Morikawa Y
Suenami K
Takayama T
Nagai A
Michiue T
Ikari A
Matsunaga T
Source :
Neurotoxicology [Neurotoxicology] 2024 Jan; Vol. 100, pp. 3-15. Date of Electronic Publication: 2023 Nov 30.
Publication Year :
2024

Abstract

α-Pyrrolidinononanophenone (α-PNP) derivatives are known to be one of the hazardous new psychoactive substances due to the most extended hydrocarbon chains of any pyrrolidinophenones on the illicit drug market. Our previous report showed that 4'-iodo-α-PNP (I-α-PNP) is the most potent cytotoxic compound among α-PNP derivatives and induces apoptosis due to mitochondrial dysfunction and suppression of nitric oxide (NO) production in differentiated human neuronal SH-SY5Y cells. In this study, to clarify the detailed action mechanisms by I-α-PNP, we investigated the mechanism of reactive oxygen species (ROS) -dependent apoptosis by I-α-PNP in differentiated SH-SY5Y with a focus on the antioxidant activities. Treatment with I-α-PNP elicits overproduction of ROS such as H <subscript>2</subscript> O <subscript>2</subscript> , hydroxyl radical, and 4-hydroxy-2-nonenal, and pretreatment with antioxidant N-acetyl-L-cysteine is attenuated the SH-SY5Y cells apoptosis by I-α-PNP. These results suggested that the overproduction of ROS is related to SH-SY5Y cell apoptosis by I-α-PNP. In addition, I-α-PNP markedly decreased antioxidant capacity in differentiated cells than in undifferentiated cells and inhibited the upregulation of hemeoxygenase 1 (HO1) and glutathione peroxidase 4 (GPX4) expression caused by induction of differentiation. Furthermore, the treatment with I-α-PNP increased the nuclear expression level of BTB Domain And CNC Homolog 1 (Bach1), a transcriptional repressor of Nrf2, only in differentiated cells, suggesting that the marked decrease in antioxidant capacity in differentiated cells was due to suppression of Nrf2/HO1 signaling by Bach1. Additionally, pretreatment with an NO donor suppresses the I-α-PNP-evoked ROS overproduction, HO1 down-regulation, increased nuclear Bach1 expression and reduced antioxidant activity in the differentiated cells. These findings suggest that the ROS-dependent apoptosis by I-α-PNP in differentiated cells is attributed to the inactivation of the Nrf2/HO1 signaling pathway triggered by NO depletion.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-9711
Volume :
100
Database :
MEDLINE
Journal :
Neurotoxicology
Publication Type :
Academic Journal
Accession number :
38040126
Full Text :
https://doi.org/10.1016/j.neuro.2023.11.010