Back to Search Start Over

A Semi-automatic Pipeline for Generation of Large Cohorts of Four-Chamber Heart Meshes.

Authors :
Strocchi M
Rodero C
Roney CH
Mendonca Costa C
Plank G
Lamata P
Niederer SA
Source :
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2735, pp. 117-127.
Publication Year :
2024

Abstract

Computational models for cardiac electro-mechanics have been increasingly used to further understand heart function. Small cohort and single patient computational studies provide useful insight into cardiac pathophysiology and response to therapy. However, these smaller studies have limited capability to capture the high level of anatomical variability seen in cardiology patients. Larger cohort studies are, on the other hand, more representative of the study population, but building several patient-specific anatomical meshes can be time-consuming and requires access to larger datasets of imaging data, image processing software to label anatomical structures and tools to create high fidelity anatomical meshes. Limited access to these tools and data might limit advances in this area of research. In this chapter, we present our semi-automatic pipeline to build patient-specific four-chamber heart meshes from CT imaging datasets, including ventricular myofibers and a set of universal ventricular and atrial coordinates. This pipeline was applied to CT images from both heart failure patients and healthy controls to generate cohorts of tetrahedral meshes suitable for electro-mechanics simulations. Both cohorts were made publicly available in order to promote computational studies employing large virtual cohorts.<br /> (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)

Details

Language :
English
ISSN :
1940-6029
Volume :
2735
Database :
MEDLINE
Journal :
Methods in molecular biology (Clifton, N.J.)
Publication Type :
Academic Journal
Accession number :
38038846
Full Text :
https://doi.org/10.1007/978-1-0716-3527-8_7