Back to Search Start Over

Risk classification of low-lying coral reef islands and their exposure to climate threats.

Authors :
Fellowes TE
Vila-Concejo A
Byrne M
Bruce E
Baker E
Source :
The Science of the total environment [Sci Total Environ] 2024 Feb 20; Vol. 912, pp. 168787. Date of Electronic Publication: 2023 Nov 28.
Publication Year :
2024

Abstract

The bio-physical responses of low-lying coral islands to climate change are of concern. These islands exist across a broad range of bio-physical conditions, and vulnerabilities to rising and warming seas, ocean acidification and increased storminess. We propose a risk-based classification that scores 6 island eco-morphometric attributes and 6 bio-physical ocean/climate conditions from recent open-access data, to assign islands with respect to 5 risk classes (Very Low, Low, Moderate, High and Very High). The potential responses of 56 coral islands in Australia's jurisdiction (Coral Sea, NW Shelf and NE Indian Ocean) to climate change is considered with respect to their bio-physical attributes and eco-morphometrics. None of the islands were classed as Very Low risk, while 8 were classed as Low (14.3 %), 34 were Moderate (60.7 %), 11 were High (19.6 %), and 3 were Very High (5.4 %). Islands in the Very High risk class (located on the NW Shelf) are most vulnerable due to their small size (mean 10 Ha), low elevation (mean 2.6 m MSL), angular/elongated shape, unvegetated state, below average pH (mean 8.05), above average rates of sea-level rise (SLR; mean 4.6 mm/yr), isolation from other islands, and frequent tropical storms and marine heatwaves. In contrast, islands in the Low (and Very Low) risk class are less vulnerable due to their large size (mean 127 Ha), high elevation (mean 8.5 m MSL), sub-angular/round shape, vegetated state, near average pH (mean 8.06), near average SLR rates (mean 3.9 mm/yr), proximity to adjacent islands, and infrequent cyclones and marine heatwaves. Our method provides a risk matrix to assess coral island vulnerability to current climate change related risks and supports future research on the impacts of projected climate change scenarios. Findings have implications for communities living on coral islands, associated ecosystem services and coastal States that base their legal maritime zones on these islands.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
912
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
38029987
Full Text :
https://doi.org/10.1016/j.scitotenv.2023.168787