Back to Search Start Over

Structural homeostasis and controlled release for anthocyanin in oral film via sulfated polysaccharides complexation.

Authors :
Bao Y
Yang X
Li J
Li Z
Cheng Z
Wang M
Li Z
Si X
Li B
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jan; Vol. 256 (Pt 2), pp. 128473. Date of Electronic Publication: 2023 Nov 27.
Publication Year :
2024

Abstract

Oral film is a novel functional carrier, which can provide a new pathway for the efficient absorption of anthocyanin. However, anthocyanin homeostasis in oral film is a prerequisite for achieving efficient absorption and utilization of anthocyanin. Herein, three sulfated polysaccharides, including chondroitin sulfate (CS), fucoidin (FU) and λ-carrageenan (λ-CG), were complexed with blueberry anthocyanin (BA) to prepare oral film formulations using hydroxypropyl methylcellulose (HPMC) as a film-forming matrix. The addition of three sulfated polysaccharides improved the stability of BA in content and color, which were associated with interactions between BA and polysaccharides. The BA retention rate of CS-BA/HPMC system increased 5.5-fold after 8 d of light-accelerated storage compared with the control group, showing the best homeostasis effect. CS and λ-CG enhanced the elongation at break and prolonged disintegration time of oral films. The addition of FU made the oral film denser and smoother, and had the highest BA release (75.72 %) in the simulated oral cavity system. In addition, the oral films of three sulfated polysaccharides complexed with BA showed superior antioxidant capacity. The present study provides new insights into the application of anthocyanin in film formulation carriers.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
256
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38029913
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.128473