Back to Search Start Over

Biomechanics of internal fixation in Hoffa fractures - A comparison of four different constructs.

Authors :
Pires RE
Rabelo JMG
Cimini CA
Casas EBL
Neder Filho AT
Giordano V
Kfuri M
de Andrade MAP
Source :
Injury [Injury] 2024 Feb; Vol. 55 (2), pp. 111219. Date of Electronic Publication: 2023 Nov 21.
Publication Year :
2024

Abstract

Objective: Compare the biomechanical effectiveness of four different bone-implant constructs in preventing fracture displacement under axial loading.<br />Methods: Twenty artificial femora had a standardized coronally oriented fracture of the lateral femoral condyle, representing a Hoffa fracture classified as a Letenneur type I. Four different fixation constructs were applied to the synthetic bones for biomechanical testing. The constructs consisted of a posterolateral (PL) buttressing locking plate in conjunction with two cannulated lag screws inserted from posterior to anterior (PA) - Group 1; Two cannulated screws inserted from anterior to posterior (AP) without plating- Group 2; A posterolateral (PL) buttressing locking plate in isolation - Group 3; and a combination of two lag screws from anterior to posterior (AP) in addition to a horizontal one-third tubular locking plate - Group 4. An axial load was applied to the fracture site with a constant displacement speed of 20 mm/min, and the test was interrupted when a secondary displacement was detected determining a fixation failure. We recorded the maximum applied force and the maximum fracture displacement values.<br />Results: Group 1 demonstrated the highest overall bone-implant axial stiffness with the lowest secondary displacement under loading. Groups 3 and 4 showed equivalent mechanical behavior. Group 2 presented the lowest mechanical stiffness to axial loading. The combination of the one-third tubular locking plate with anterior-to-posterior lag screws (Group 4) resulted in 302 % increase in fixation stiffness when compared to anterior-to-posterior lag screws only (Group 2).<br />Conclusions: This study confirms the mechanical superiority of having a plate applied parallel to the main fracture plane in the setting of coronally oriented femoral condyle fractures. The addition of a horizontal plate, perpendicular to the main fracture plane, significantly increased the resistance to shearing forces at the fracture site when compared to constructs adopting just cannulated screws.<br />Level of Evidence: Biomechanical study.<br />Competing Interests: Declaration of Competing Interest REP has received honoraria from Zimmer Biomet and Smith & Nephew for educational activities. MAPA has received honoraria from Zimmer Biomet for educational activities. For the remaining authors none were declared.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-0267
Volume :
55
Issue :
2
Database :
MEDLINE
Journal :
Injury
Publication Type :
Academic Journal
Accession number :
38029682
Full Text :
https://doi.org/10.1016/j.injury.2023.111219