Back to Search Start Over

Properties of sodium alginate-based nanocomposite films: Effects of aspect ratio and surface charge of cellulose nanocrystals.

Authors :
Yang J
Zhong F
Liu F
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jan; Vol. 256 (Pt 2), pp. 128420. Date of Electronic Publication: 2023 Nov 25.
Publication Year :
2024

Abstract

Three cellulose nanocrystals (CNCs) were prepared to reinforce sodium alginate (SA) films. This study investigated effects of aspect ratio (L/D) and surface charge of three CNCs (CCNC, MCNC, and WCNC) on the properties of films. At CNC concentrations ≤3 wt%, MCNC, with a medium L/D but the lowest surface charge density among the three CNCs, exhibited the highest efficiency in enhancing the Young's modulus and tensile strength of films. This indicated that, apart from L/D, CNC's surface charge density also affected its reinforcing effects in anionic SA-based films. Compared with other CNCs, MCNC with the lowest charge density exhibited weaker repulsion with SA, potentially contributing to stronger interfacial interactions between them. At concentrations >3 wt%, the reinforcing efficiency of MCNC was extremely close to that of WCNC, which had the highest L/D but medium charge density. This was possibly because, according to SEM results, MCNC with the lowest absolute value of zeta potential aggregated more severely than other CNCs. However, both MCNC and WCNC were consistently more efficient than CCNC. Moreover, FTIR results revealed that WCNC formed more hydrogen bonds with SA than other CNCs. Consequently, adding WCNC was more effective in reducing films' water vapor permeability and hydrophilicity.<br />Competing Interests: Declaration of competing interest The authors have no conflicts of interest to declare.<br /> (Copyright © 2023. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1879-0003
Volume :
256
Issue :
Pt 2
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
38013077
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.128420