Back to Search
Start Over
Resilience of stormwater biofilters following the deposition of wildfire residues: Implication on downstream water quality management in wildfire-prone regions.
- Source :
-
Journal of hazardous materials [J Hazard Mater] 2024 Mar 05; Vol. 465, pp. 132989. Date of Electronic Publication: 2023 Nov 11. - Publication Year :
- 2024
-
Abstract
- Stormwater treatment systems such as biofilters could intercept and remove pollutants from contaminated runoff in wildfire-affected areas, ensuring the protection of water quality downstream. However, the deposition of wildfire residues such as ash and black carbon onto biofilters could potentially impair their stormwater treatment functions. Yet, whether and how wildfire residue deposition could affect biofilter functions is unknown. This study examines the impact of wildfire residue deposition on biofilter infiltration and pollutant removal capacities. Exposure to wildfire residues decreased the infiltration capacity based on the amount of wildfire deposited. Wildfire residues accumulated at the top layer of the biofilter, forming a cake layer, but scraping this layer restored the infiltration capacity. While the deposition of wildfire residues slightly changed the pore water geochemistry, it did not significantly alter the removal of metals and E. coli. Although wildfire residues leached some metals into pore water within the simulated root zone, the leached metals were effectively removed by the compost present in the filter media. Collectively, these results indicate that biofilters downstream of wildfire-prone areas could remain resilient or functional and protect downstream water quality if deposited ash is periodically scraped to restore any loss of infiltration capacity following wildfire residue deposition.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3336
- Volume :
- 465
- Database :
- MEDLINE
- Journal :
- Journal of hazardous materials
- Publication Type :
- Academic Journal
- Accession number :
- 38000283
- Full Text :
- https://doi.org/10.1016/j.jhazmat.2023.132989