Back to Search Start Over

pyPESTO: a modular and scalable tool for parameter estimation for dynamic models.

Authors :
Schälte Y
Fröhlich F
Jost PJ
Vanhoefer J
Pathirana D
Stapor P
Lakrisenko P
Wang D
Raimúndez E
Merkt S
Schmiester L
Städter P
Grein S
Dudkin E
Doresic D
Weindl D
Hasenauer J
Source :
Bioinformatics (Oxford, England) [Bioinformatics] 2023 Nov 01; Vol. 39 (11).
Publication Year :
2023

Abstract

Summary: Mechanistic models are important tools to describe and understand biological processes. However, they typically rely on unknown parameters, the estimation of which can be challenging for large and complex systems. pyPESTO is a modular framework for systematic parameter estimation, with scalable algorithms for optimization and uncertainty quantification. While tailored to ordinary differential equation problems, pyPESTO is broadly applicable to black-box parameter estimation problems. Besides own implementations, it provides a unified interface to various popular simulation and inference methods.<br />Availability and Implementation: pyPESTO is implemented in Python, open-source under a 3-Clause BSD license. Code and documentation are available on GitHub (https://github.com/icb-dcm/pypesto).<br /> (© The Author(s) 2023. Published by Oxford University Press.)

Details

Language :
English
ISSN :
1367-4811
Volume :
39
Issue :
11
Database :
MEDLINE
Journal :
Bioinformatics (Oxford, England)
Publication Type :
Academic Journal
Accession number :
37995297
Full Text :
https://doi.org/10.1093/bioinformatics/btad711