Back to Search Start Over

Bisphenol-A-diglycidyl ether modified chitosan/nano-SiO 2 via hydrothermal process: A statistical modeling and adsorption mechanism for reactive orange 16 dye removal.

Authors :
Abdulhameed AS
Wu R
Musa SA
Agha HM
ALOthman ZA
Jawad AH
Algburi S
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jan; Vol. 256 (Pt 1), pp. 128267. Date of Electronic Publication: 2023 Nov 20.
Publication Year :
2024

Abstract

In this study, chitosan/nano SiO <subscript>2</subscript> (CTS/NS) was chemically modified with bisphenol A diglycidyl ether (BADGE) cross-linker-assisted hydrothermal process to create an effective adsorbent, CTS-BADGE/NS, for the removal of reactive orange 16 (RO16) dye from aquatic systems. Box-Behnken design (BBD) was used to optimize the adsorption process by varying the adsorbent dose (0.02-0.1 g/100 mL), pH (4-10), and time (20-360 min). The adsorption isotherm results indicated that the Langmuir model fits the experimental data well, suggesting that the adsorption process involves a monolayer formation of RO16 on the surface of CTS-BADGE/NS. The kinetic modeling of RO16 adsorption by CTS-BADGE/NS demonstrated that the pseudo-first-order model fits the adsorption data. CTS-BADGE/NS achieved an adsorption capacity of 97.8 mg/g for RO16 dye at optimum desirability functions of dosage 0.099 g/100 mL, solution pH of 4.44, and temperature of 25 °C. Overall, the π-π electron donor-acceptor system significantly improved the adsorption performance of the CTS-BADGE/NS. The results of the regeneration investigation demonstrate that the CTS-BADGE/NS exhibits effective adsorption of RO16, even after undergoing five consecutive cycles. The results of this study suggest that the developed CTS-BADGE/NS composite can be a promising adsorbent for water purification applications.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
256
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
37992917
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.128267