Back to Search
Start Over
Biological inhibition of denitrification (BDI): an early plant strategy for Fallopia × bohemica seedling development.
- Source :
-
Annals of botany [Ann Bot] 2024 Apr 23; Vol. 133 (4), pp. 533-546. - Publication Year :
- 2024
-
Abstract
- Background and Aims: The successful plant Fallopia × bohemica presents interesting capacities for control of the soil nitrogen cycle at the adult stage, termed biological inhibition of denitrification (BDI). The BDI strategy allows the plant, via the production of secondary metabolites (procyanidins), to compete with the denitrifying microbial community and to divert nitrate from the soil for its benefit. In this study, we analysed whether seedlings of F. × bohemica can implement BDI at the seedling stage. We also determined whether soil nitrogen availability influences the implementation of BDI and seedling growth.<br />Methods: We sowed achenes of F. × bohemica in soils representing a nitrogen gradient (six treatments) and harvested seedlings after 20 or 40 days of growth. The denitrification and related microbial communities (i.e. functional gene abundances of nirK and nirS), soil parameters (nitrate content and humidity) and plant performance (biomass, growth and root morphology) were determined.<br />Key Results: On soil without addition of nitrogen, BDI was observed after 20 days of growth, whereas a stimulation of denitrification was found after 40 days. The increase of soil N content had few effects on the activity and structure of the soil denitrifying community and on the plant biomasses or the relative growth rates. Correlations between plant and microbial parameters were observed after 20 days of growth, reflecting early and strong chemical interactions between plants and the denitrifying community, which decreased with plant growth after 40 days.<br />Conclusions: This study shows that an early BDI enhances the efficiency of nitrogen acquisition in the first weeks of growth, allowing for a conservative root strategy after 40 days. This switch to a conservative strategy involved resource storage, an altered allocation to above- and below-ground parts and an investment in fine roots. It now seems clear that this storage strategy starts at a very young age with early establishment of BDI, giving this clonal plant exceptional capacities for storage and multiplication.<br /> (© The Author(s) 2023. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
Details
- Language :
- English
- ISSN :
- 1095-8290
- Volume :
- 133
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Annals of botany
- Publication Type :
- Academic Journal
- Accession number :
- 37970962
- Full Text :
- https://doi.org/10.1093/aob/mcad174