Back to Search Start Over

Allocholic acid protects against α-naphthylisothiocyanate-induced cholestasis in mice by ameliorating disordered bile acid homeostasis.

Authors :
Han X
Lin C
Liu H
Li S
Hu B
Zhang L
Source :
Journal of applied toxicology : JAT [J Appl Toxicol] 2024 Apr; Vol. 44 (4), pp. 582-594. Date of Electronic Publication: 2023 Nov 15.
Publication Year :
2024

Abstract

Cholestasis is a pathological condition characterized by disruptions in bile flow, leading to the accumulation of bile acids (BAs) in hepatocytes. Allocholic acid (ACA), a unique fetal BA known for its potent choleretic effects, reappears during liver regeneration and carcinogenesis. In this research, we investigated the protective effects and underlying mechanisms of ACA against mice with cholestasis brought on by α-naphthylisothiocyanate (ANIT). To achieve this, we combined network pharmacology, targeted BA metabolomics, and molecular biology approaches. The results demonstrated that ACA treatment effectively reduced levels of serum AST, ALP, and DBIL, and ameliorated the pathological injury caused by cholestasis. Network pharmacology analysis suggested that ACA primarily regulated BA and salt transport, along with the signaling pathway associated with bile secretion, to improve cholestasis. Subsequently, we examined changes in BA metabolism using UPLC-MS/MS. The findings indicated that ACA pretreatment induced alterations in the size, distribution, and composition of the liver BA pool. Specifically, it reduced the excessive accumulation of BAs, especially cholic acid (CA), taurocholic acid (TCA), and β-muricholic acid (β-MCA), facilitating the restoration of BA homeostasis. Furthermore, ACA pretreatment significantly downregulated the expression of hepatic BA synthase Cyp8b1, while enhancing the expression of hepatic efflux transporter Mrp4, as well as the renal efflux transporters Mdr1 and Mrp2. These changes collectively contributed to improved BA efflux from the liver and enhanced renal elimination of BAs. In conclusion, ACA demonstrated its potential to ameliorate ANIT-induced liver damage by inhibiting BA synthesis and promoting both BA efflux and renal elimination pathways, thus, restoring BA homeostasis.<br /> (© 2023 John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1099-1263
Volume :
44
Issue :
4
Database :
MEDLINE
Journal :
Journal of applied toxicology : JAT
Publication Type :
Academic Journal
Accession number :
37968239
Full Text :
https://doi.org/10.1002/jat.4562