Back to Search Start Over

Temporally distinct roles of Aurora A in polarization of the C. elegans zygote.

Authors :
Manzi NI
de Jesus BN
Shi Y
Dickinson DJ
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Oct 26. Date of Electronic Publication: 2023 Oct 26.
Publication Year :
2023

Abstract

During asymmetric cell division, coordination of cell polarity and the cell cycle is critical for proper inheritance of cell fate determinants and generation of cellular diversity. In Caenorhabditis elegans ( C. elegans ), polarity is established in the zygote and is governed by evolutionarily conserved Partitioning defective (PAR) proteins that localize to distinct cortical domains. At the time of polarity establishment, anterior and posterior PARs segregate to opposing cortical domains that specify asymmetric cell fates. Timely establishment of these PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C.elegans ). Aurora A depletion by RNAi causes a spectrum of phenotypes including no posterior domain, reversed polarity, and excess posterior domains. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system, drug treatments, and high-resolution microscopy, we found that AIR-1 regulates polarity via distinct mechanisms at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent the formation of bipolar domains, while in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together these data clarify the origin of the multiple polarization phenotypes observed in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with the progression of the cell cycle.

Details

Language :
English
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
37961467
Full Text :
https://doi.org/10.1101/2023.10.25.563816