Back to Search Start Over

A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation.

Authors :
Jin Y
Kozan D
Anderson JL
Hensley M
Shen MC
Wen J
Moll T
Kozan H
Rawls JF
Farber SA
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2023 Nov 04. Date of Electronic Publication: 2023 Nov 04.
Publication Year :
2023

Abstract

Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β -oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Accession number :
37961364
Full Text :
https://doi.org/10.1101/2023.11.01.565134